6. Statistical Methods

There are main 2 common methods for computing a sample size, namely:

1. Simple Random Sampling Method without a replacement when S.D. of the group is known
2. Simple Random Sampling Method without a replacement when p (proportion of the answer of the main variable) of the group is known

Points to consider when computing a sample size

1. Desired Precision (+d).

Researchers must determine the largest acceptable difference between the sample statistics and the population parameters, specified as an acceptable degree of sampling error

- Ask, "How precise does the measurement need to be?"

2. Value Associated with Desired Confidence Level (z)

The greater the desired confidence, the larger the sample size must be.

- Ask, "How confident do you want to be that the specified confidence interval takes in the population mean?"

3. Estimator of the Standard Deviation or Proportion of the Population (s.d. or p)
The greater the heterogeneity of the population, the larger the sample size must be.

- Ask, "How heterogeneous are the members that are being investigated?"

Methods to Estimate the Population S.D. and p

\square Use information from an earlier study
\square Conduct a small-scale study of the population
\square Use secondary data, e.g. a Meta-Analysis
\square Talk to informed people

1. Simple Random Method without a replacement when S.D. is known

Where
$\mathrm{n}=$ optimum sample size
$\mathrm{N}=$ population size
$\mathrm{s}=\mathrm{S} . \mathrm{D}$.
z = a reliability coefficient
$\mathrm{d}=$ precision rate or error rate
\square There are 1,500 students in a school. A researcher gave a 100-item proficiency test to 40 of them as a pilot test and found that the mean score was 55.47 and S.D. was 15.0. With a reliability of 95% and sampling error not more than 3, how large a sample size should the researcher use in his/her main study?

Reliability of $95 \%, z=1.960$ or roughly $=2.0$ and that of $99 \%, z=2.576$ or 3.0 .

An Example

$n=\frac{N(z s)^{2}}{N d^{2}+(z s)^{2}}$

Where:
$\square \mathrm{n}=$ optimum sample size
$\square \mathrm{N}=1500$
$\square \mathrm{s}=15.0$
$\square \mathrm{z}=2$
$\square \mathrm{d}=3$
\square There are 1,500 students in a school. A researcher gave a 100-item proficiency test to 40 of them as a pilot test and found that the mean score was 55.47 and S.D. was 15.0. With a reliability of 95% and sampling error not more than 3, how large a sample size should the researcher use in his/her main study?

